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Abstract 

Churn prediction is crucial for companies in order to build an efficient customer 

retention plans and apply successful marketing strategies. However, from data mining point 

of view, churn prediction is considered as a complex and complicated task due to the highly 

imbalanced distribution of the class labels where the ratio of the churning customers are 

much smaller than the ratio of the loyal ones. Genetic programming has proven its 

efficiency in prediction problems, since it solves them as an optimized classification 

problem with the ability of identifying the relevant features. In this paper, we propose the 

application of a genetic programming with cost sensitive learning (GP-CSL) that solves the 

churn prediction task as a classification problem with a penalty cost for prediction errors. 

Comprehensive experiments on real telecommunication dataset are applied using the 

proposed GP-CSL technique to evaluate its effectiveness in predicting the customers 

vulnerable to churn. The obtained results indicate promising churn detection rates 

compared with other well-known classifiers. Moreover, a formal analysis of the most 

relevant features in the dataset is performed using different penalty cost matrices and other 

classical fitness functions. The analysis results show that 4 to 5 features out of 10 features 

are the most relevant ones. In terms of business, this could help decision makers to 

determine the most influential factors on customers churn, and consequently help them in 

planning effective retention campaigns. 

 

Keywords: Churn Prediction, Genetic Programming, Cost Sensitive Learning, 

Telecommunication 

 

1. Introduction 

A key issue in any customer relationship management (CRM) is the effectiveness of the 

adopted customer retention strategy. In this context, accurate and early prediction of which 

customers are going to churn is very important for planning efficient marketing campaigns 

and consequently successful retention strategies [1]. The importance of customer retention 

is that in most cases the cost of acquiring new customers is much greater than retaining 

existing customers. Successful companies realize this importance which can be seen 

nowadays in different sectors such as telecommunication markets, banking and insurance 

companies [2]. Therefore, predicting customer churn is considered as a very essential and 

vital process in business marketing. 
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Conventionally, churn prediction is tackled as a binary classification problem, where the 

goal is to predict whether the customer will leave the company (i.e., churn) or not (i.e., loyal) 

[3]. In the literature, different classical machine learning algorithms were applied and 

investigated for this task such as Artificial Neural Networks (ANNs) [4], Support Vector 

Machines (SVMs) [5], Decision Trees (DT) [6], and Logistic Regression (LR) [6]. 

Hybridization of more than one algorithm were also proposed churn prediction in an 

attempt to outperform the single algorithm approach [7].  

From a machine learning perspective, customer churn prediction is considered a very 

challenging and complex problem. This is due to the highly imbalanced distribution of the 

class labels of the data, where in telecommunication market the percentage of churners 

ranges from 5% to 15% in most cases [8]. This problem makes the application of standard 

machine learning algorithms inefficient, because they tend to give more attention to 

majority class and disregard the rare class, which represents the churn customers [9]. 

In this work we propose the application of a genetic programming approach with cost 

sensitive learning (GP-CSL) for customers churn prediction in the telecommunication 

market. Genetic programming is considered one of the popular optimization techniques that 

successfully applied for solving different classification problems [10, 11]. In this paper, the 

cost of the churner’s class, which represents the rare class is controlled and increased to 

guide the generated GP models to give more attention toward churner’s class. The used 

costs of churners can be in a way that is more flexible with the costs of the retention 

campaigns. Another motivation for using GP is the automatic feature selection mechanism 

that embedded in its design. GP can give an insight on the most influencing features in the 

classification. Identifying such features can significantly help decision makers in planning 

effective customer retention campaigns.  

This paper aims to achieve high churn prediction rates, and utilize the embedded feature 

selection mechanism in GP to identify the most influencing features of the churn prediction 

problem. The proposed GP-CSL model is verified and tested using a real data set, which is 

collected from a major Jordanian telecommunication company. In addition, the effect of 

different cost values are experimented on the churn prediction accuracy. Furthermore, a 

formal analysis of the most relevant features in the dataset is performed using different 

penalty cost matrices and other classical fitness functions. In addition, the developed model 

is evaluated and compared with different machine learning models that commonly applied 

in the literature for churn prediction problem. 

This paper is organized as follows: Section 2 discusses the related work done in 

classification for imbalanced data, especially for customer churn prediction. Section 3 

describes the genetic programming and how it is used to solve classification problems. In 

Section 4 the proposed GP-CSL is explained. Section 5 describes the model evaluation and 

the experimental results. Finally, the findings and remarks of this work, and future works 

are concluded in Section 6. 

 

2. Related Work 

In machine learning, the approaches that handle the problem of the imbalanced class 

distribution can fall into four main approaches. The first one is an internal approach, where 

the learning algorithms are modified internally to overcome this problem. An example of 

this approach for churn prediction can be found in [5], where the authors introduced an 

improved one-class SVM method for churn prediction with different kernel functions The 

authors proved that using SVM for churn prediction is an efficient, but it needs a lot of time 

to select proper kernel parameters and input features.  

The second one is an external approach (also known as data level approach), where the 

training data is preprocessed to decrease the effect of the difference between class ratios by 

using the oversampling and under-sampling techniques [12].  
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The third approach is the cost sensitive learning, which assigns misclassification penalty 

to each class. The authors in [13] proposed a financial based measure for evaluating the 

effectiveness of a churn campaign taking by considering offers information and their 

financial cost and probability acceptance that depending on the customer profile. Moreover, 

they used a real-world churn dataset to compare different cost-sensitive classification 

algorithms (decision tree, random forests, and logistic regression). The results show that 

cost-sensitive approach can rise the cost savings.  

Another example of using cost-sensitive approach can be found in [14]. The authors 

introduced the notion of customer lifetime value (CLV), which could be defined as the 

discounted value of future marginal earnings, based on the customer’s activity, where a 

churner is defined as someone whose CLV is decreasing. The results showed that the cost-

sensitive approaches achieved very good results comparing to the other five churn 

prediction methods namely; Logistic Regression, Decision Trees, Neural Networks, 

AdaCost, and cost sensitive Decision tree in terms of the defined profit measure besides 

achieving a good overall classification. 

The fourth approach is based on using ensembles of classifiers that combine the 

prediction of a group of classifiers [15]. The authors in [16] applied four classification 

techniques: Decision Tree, Artificial Neural Networks, K-Nearest Neighbors, and Support 

Vector Machine to compare their performances using data from Iranian mobile company. 

After that, the authors proposed a hybrid methodology, which made considerable 

improvements in terms of prediction accuracy, recall, and precision. 

Another example of using the ensemble approach was presented in [17], where the 

authors proposed a one-step classifier ensemble model for imbalanced data. This ensemble 

method is adaptive such that it can select one of two kinds of dynamic ensemble approaches 

(dynamic classifier selection and dynamic ensemble selection). In the same research line, 

the authors in [15] proposed a negative correlation learning (NCL) based ensemble of neural 

networks for predicting churn in a telecommunication company. The results proved that the 

used approach can achieve better churn detection than other popular machine learning 

algorithms. 

As noted in most of the related work, cost-sensitive approaches have been investigated 

and successfully applied on churn prediction problem. The significant merits of the cost-

sensitive approach motivated our attempts to apply it to the GP and investigate its 

effectiveness on customer churn prediction problem. In this paper, GP is applied on a real 

telecommunication churn prediction problem. The GP capabilities are used to locate the 

best classifier that suits the churn problem. Furthermore, the training process is 

accomplished with the use of cost sensitive approach by learning that misclassifying a churn 

customer has a high penalty cost. Moreover, GP is used to identify the most relevant 

features that may affect the customer to churn 

 

3. Genetic Programming 

Genetic Programming (GP) [18] is one of the evolutionary computation approaches 

that is used as a powerful tool for optimization and problem solving, and has been 

applied to a wide range of applications [19]. GP is an effective technique, since it 

automatically solves problems without requiring the user to know the structure of the 

solution in advance. Thus, it can be used, whenever both the solution and its structure 

are unknown to the user. Moreover, GP is distinguished from other evolutionary 

algorithms by the use of a variable size tree representation rather than a linear fixed 

length representation. GP solves the problems by generating programs, and these 

programs consist of mathematical functions (+, -, *, / ... etc.), logical functions (ifElse, 

largerThan, equals ... etc.), and terminals, which can be variables or constants. GP 

programs are evaluated by fitness function, which represents a function that asses the 

goodness/fitness of the solution that provided by each program. As an optimization 
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process GP’s main objective is to maximize or minimize the fitness value based on the 

target problem. The GP process has four main steps which can be described as follows:  

1. First, a random population of programs (solutions) is generated.  

2. Then, a fitness ranking is calculated for each program using the fitness function 

defined based on the problem to be solved.  

3. After that, a selection process is applied to choose two programs (parents) in order 

to generate new programs (children). Selection applies the natural rule of survival 

of the fittest, which ensures the best solution quality in the optimization problems.  

4. Then, the new programs (children) are generated by applying natural operations of 

crossover and mutation, which ensure the diversity among solutions. 

 

All these steps are repeated until a new population with the same size as the old 

population is produced, as shown in the flowchart represented in Figure 1. This 

process is applied over and over until a stopping criterion is satisfied, such as reaching 

a predefined number of generations, or finding a solution with the predefined fitness. 

Many important parameters must be defined before starting the GP run, for example; 

the fitness function to evaluate the program quality, population size, number of 

generation, functions and constants to be used in generated programs (solutions), and 

crossover and mutation probabilities. The details of the previous steps are discusses 

in the following subsections. 

 

 

Figure 1. GP Flowchart 
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3.1. GP Programs and Classification Problems 

GP programs are similar to genetic algorithm chromosomes, however, these programs 

has variable size and formatted of different functions and values, whereas GA 

chromosomes has fixed size and their genes are well formatted to contain known values 

(binary, integers...etc.). 

An example of a tree representation for a GP program is shown in Figure 2, where the 

program consists of three functions (plus, sin, division) and two variables (x and y) and one 

constant value (4), this program can be written in LISP language as: (+(sin x) (/ y 4)). 

 

Figure 2. An Example of GP Program 

GP is used to solve a classification problem such that each program is a suggested 

classifier. To evaluate the classifier’s quality, we can use any classification quality measure 

as a fitness function such as classification accuracy, which represents the percentage of 

correctly classified instances. Therefore, to calculate the fitness value of the program shown 

in Figure 2, (assuming that x and y are values of data instance), the program is executed 

and get the resulted number, then this number is converted to a class label and compare it 

with the original class label. Converting the result to a class label can be done using different 

ways, such as calculating the modulus of the results over the number of classes (if the 

problem has two classes A, and B, then the result would be 0 or 1, where 0 can be class A, 

1 can be class B). 

The process of executing the program is done for each instance of the data and then the 

accuracy of the program is computed as a fitness value. The GP process continues until 

finding the best classifier with the highest accuracy. Different fitness functions can be used 

such as Mean Squared Error (MSE) and Pearson (R2), where GP calculates one of them for 

each program instead of accuracy and searches for the program with the best fitness value 

(minimum error). 

 

3.2. Natural Operations 

Three natural operators are applied in GP (selection, crossover, and mutation). Selection 

process is the process of selecting two programs as parents to generate new programs as 

children. There are many selection methods in the literature such as: Roulette wheel 

selection, Tournament selection, and Rank selection [20]. Exploration and exploitation of 

the search space to find a better program is done using crossover and mutation operators. 

Crossover means switching one node of a program with another node from another program 

of the parents. With a tree-based representation, replacing a node means that the whole 

branch is being replaced. However, Mutation means changing a single program by either 

replacing a function with another function or replacing a terminal with another terminal. 

Crossover and mutation are applied based on a predefined probability, such that based on 

random value either crossover is applied or not, same applies for mutation. Usually 

crossover probability is higher than mutation probability. 
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4. Proposed GP-CSL Based Framework 

GP searches for the best fitness value of the program, whether a minimum or maximum 

value. The fitness function evaluates the quality of the proposed solution and is the core 

point that controls the GP process. Therefore, to find the optimal solution for a problem we 

need a good fitness function that fits the problem. Traditionally, researchers solve 

classification problems using GP with accuracy as a fitness function (searching for the 

maximum value). Classification accuracy means the percentage of correctly classified 

instances. However, when the data of the problem to be solved is imbalanced, accuracy is 

not a good option to be used as it may suffer from over-fitting problem (give more attention 

to majority class). Therefore, many techniques were used to overcome over-fitting, and at 

the same time build a good classifier for imbalanced data, one of these techniques is the 

cost sensitive learning [21]. 

Cost sensitive learning aims to give a higher cost for predicting a specific class, such as 

any misclassification of a class will penalize (cost more) the classifier. Cost matrix is a 

matrix that describes the cost for misclassification in a particular scenario. It is similar to 

confusion matrix, however, in a binary classification case, its values are the cost of 

classifying an instance from class 1 into 1, or into 0, and an instance from class 0 into 1 or 

0. Where it gives higher cost to misclassifying rather than correctly classify the instance. 

Table 1, shows an example of a cost matrix, where classifying a nonChurner instance as a 

churner, will cost the classifier a penalty equal to Costc. A penalty cost equals to CostB can 

be defined also for classifying a churner instance as nonChurner. Defining high cost values 

gives more importance to that class. Therefore, it helps in building a classifier for 

imbalanced data and can help in training the classifier to detect the class with the less 

number of instances and avoid the over-fitting problem. In this paper we adjust the GP to 

use the cost sensitive learning approach as its fitness, rather than the traditional accuracy. 

Therefore, the fitness function can be calculated as shown in equation 1: 

 CSL-Fitness = Costc ∗ C + CostB ∗ B                                                                               (1) 

Where Costc is the penalty cost of classifying a nonChurner as a churner, C is the number 

of instances that were classified as a churners and they are not. CostB is the penalty cost of 

classifying a churner as a nonChurner, B is the number of instances that are churners but 

were classified as nonChurners. When GP-CSL uses this equation as a fitness function then 

it searches for the minimum value retrieved. 

Table 1. Cost Matrix 

 Actual 

 nonChurners Churners 

Predicted nonChurners 0 CostB 

Predicted churners Costc 0 

 

4.1. Identification of the Most Relevant Features 

One of the most important features of GP is the interpretability of the generated models. 

In addition, GP can give an insight on the most relevant variables using an embedded 

feature selection mechanism. Over the course of the evolutionary cycle of GP, features that 

have more impact on the accuracy of the classification models will survive and keep 

appearing in the models, while the less relevant ones will decay in the models until they 

disappear. To identify the most relevant features in our developed GP based churn 

prediction model, we refer to the “relative variable relevance” measurement [22]. The 

relative variable relevance for each variable is calculated based on the number of variable 
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references in all models generated over the course of GP iterations. The relative variable 

relevance of a given feature can be described in the following steps: 

- Suppose S is a set of input variables {x1, x2 … xn} where xi ∈ S.  

- The frequency of xi with respect to a given model M generated during the GP 

evolutionary cycle can be defined as RefCount(xi , M) which is the number of 

references to xi in M.  

- Thus, the frequency of xi with respect to a population P can be defined as: 

freq(xi, P) =  ∑ RefCount(xi, M)MϵP                                                                    (2) 

- Consequently, the relative frequency rel(xi , P) of variable xi in a population P is 

the number of references freq(xi , P) of variable xi divided by the number of all 

variable references as given in Equation 3. 

𝑟𝑒𝑙(𝑥𝑖 , 𝑃) =
𝑓𝑟𝑒𝑞(𝑥𝑖,𝑃)

∑ 𝑓𝑟𝑒𝑞(𝑥𝑘,𝑃)𝑛
𝑘=1

                                                                                  (3) 

In our churn prediction problem, finding the most relevant features of the data that affect 

the classifiers help us in different ways. First, it helps the company to focus on these features, 

and analyze how they may affect the customers. Moreover, from a machine learning 

perspective, knowing these relevant features helps in building a fast classifier that can label 

the new data based on few number of inputs. 

 

5. Experiments and Results 

To evaluate the proposed GP-CSL technique and see how effective it is in detecting 

churns, experiments were performed using 2-folds cross validation, where the data is 

separated into 50% for training and 50% for testing. Taking into account that our data is 

imbalanced we applied stratified sampling in splitting the data, in order to preserve the ratio 

of each class in the training and testing parts. The cross-validation is repeated 10 times, 

yielding 10 random partitions of the original data, and these 10 results are averaged to 

produce one estimation. All experiments are conducted using HeuristicLab 3.3.9 

framework [23]. A systematic experimentation process was conducted to tune the 

parameters of GP. For this, different population sizes were experimented (i.e., 50, 100, 150, 

200, and 500). For mutation and crossover rates, GP was experimented at 2%, 5%, 10% 

and 15% for mutation, and 85%, 90%, and 95% for crossover. The best performance was 

obtained with the parameters values listed in Table 2. 

Table 2. GP Parameters 

Parameter Value 

Mutation probability 15% 

Crossover probability 95% 

Population size 50 

Maximum generations 100 

Selection mechanism Tournament selector 

Elites 1 

Operators +,-,*,\ 
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5.1. Dataset Description 

The dataset used in this work was provided by a major cellular telecommunication 

company located in Jordan. The data set contains 11 attributes of randomly selected 5000 

customers subscribed to a prepaid service for a time interval of three months. The attributes 

cover outgoing/incoming calls related statistics. The data were provided with a class label 

for each customer indicating whether the customer churned (his subscription is terminated) 

or still active. The dataset has a highly imbalanced class distribution where the total number 

of churners is 381, which forms 7.6% of the total number of customers. A list of the 

variables along with their brief description are given in Table 3. 

Table 3. Churn Data Feature Description 

Feature  Feature name Description 

F1  3G   Subscriber is provided with 3G service (Yes, No) 

F2   Total Consumption   Total monthly fees (calling+sms) in (JD) 

F3   Int'l calling fees   Monthly fees for international calling (JD) 

F4   Int'l MOU   Total of international outgoing calls in minutes 

F5   Int'l sms fees   Monthly fees for international sms (JD) 

F6   Int'l sms count   Number of monthly international sms 

F7   Local sms fees   Monthly local sms fees (JD) 

F8   Local sms count   Number of monthly local sms 

F9   Total MOU   Total minutes of use for all outgoing calls 

F10   On net MOU   Minutes of use for on-net-outgoing calls 

F11   Churn   Churning customer status (yes, No) 

 

5.2. Model Evaluation Metrics 

In order to evaluate the developed churn prediction model, we refer to the confusion 

matrix shown in Table 4, which is the primary source for accuracy estimation in 

classification problems. Based on this confusion matrix, the following different criteria are 

used for evaluation: 

Table 4. Confusion Matrix 

 Actual 

 nonChurners Churners 

Predicted nonChurners TP FP 

Predicted churners FN TN 

 

1. Accuracy: is the percentage of the total number of predictions that were correctly 

classified. 

Accuracy =  
TN+TP

TN+TP+FN+FP
                                   (4) 
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2. Recall: is the fraction of relevant instances that have been retrieved over the total 

amount of relevant instances. It can be given by the following equation: 

Recall_Churners =  
TP

TP+FN
                            (5) 

Recall_nonChurners =  
TN

TN+FP
                                                                           (6) 

3. Precision-nonChurners: is the fraction of relevant instances among the retrieved 

instances. It can be given by the following equation 

Precision_nonChurners =  
TN

TN+FN
              (7) 

4. G-mean: is the geometric mean of the recalls of each class and it can be measured 

by the following equation: 

G − Mean = √Recall_Churners X Recall_nonChurners                                  (8) 

 

5.3. Results 

GP-CSL was tested using different penalty cost matrices. In each matrix the cost of the 

churner class is increased by +5, starting from 5 until 30. The following expressions will 

be used to represent the penalty cost matrices [1:5], [1:10], [1:15], [1:20], [1:25], and [1:30]. 

However, the traditional fitness function that uses the accuracy metric is the same as using 

a penalty cost matrix with cost 1, thus we can represent it as [1:1]. Choosing these costs 

came from extensive experiments with different penalty costs, where choosing 30 as the 

last penalty cost was because G-Means values decreased significantly with larger costs. The 

drop in G-mean values reflects the high detection of churners but also high misclassification 

of normal customers. The results of the proposed GP-CSL using five different cost matrices 

are compared with three traditional GP fitness functions (accuracy, Pearson R2, and Mean 

Squared Error - MSE) and are shown in Table 5. MSE and Pearson R2 are calculated as 

shown in Equation 9 and 10, respectively. 

MSE= 
1

n
∑ (y

i
- �̂�i)

2n
i=1                  (9) 

𝑅 =
∑ (𝑦𝑖− �̅�)(�̂�𝑖−�̅̂�)𝑛

𝑖=1

√∑ (𝑦𝑖− �̅�)2 ∑ (�̂�𝑖−�̅̂�)2𝑛
𝑖=1

𝑛
𝑖=1

                                                                                               (10) 

Where y is the actual value, �̂� is the predicted value, �̅� is the mean of actual value, �̅̂� is 

the mean of predicted value, and n is the total number of instances. The results of GP using 

accuracy as a fitness achieved the highest accuracy value compared with other fitness 

functions and GP-CSL cost matrices. However, this does not mean that this model can 

perfectly detect churners as the data is imbalanced and this result might represent an 

example of over-fitting problem. 

The recall of Churner and recall of nonChurner results that represent the probability of 

detection of churners and nonChurners are shown in Table 5. GP using accuracy as a fitness 

achieved a recall of nonChurner 0.9994 (which is the highest), and a recall of churner equal 

to 0.7034 (the lowest value compared with other fitness functions). GP-CSL using cost 

penalty matrix of [1:30] achieved the highest recall value of churner equals to 0.9467, 

however it achieved the lowest recall of nonChurners 0.6648. The fitness function that got 

good recall results for both churner and nonChurner was GP-CSL with penalty cost matrix 

[1:20], which achieved 0.8341 for recall of churners and 0.8493 for recall of nonChurners. 

Figure 3 shows the results of recalls for both churners and nonChurners for all GP-CSL 

fitness functions using different penalty cost matrices. Where [1:1] represents the accuracy 

fitness function. It is clear from the figure, that the accuracy fitness function detects the 

nonChurners better than churners due to the data imbalanced feature. Moreover, GP-CSL 
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using [1:30] penalty cost matrix focuses on churners by giving high cost for not detecting 

churners, thus results in low recall for nonChurner detection. 

The results of accuracy and G-Means are shown in Figure 4. Where it shows that the 

accuracy drops down when GP-CSL uses higher penalty costs. The accuracy values start 

with 0.9769 for [1:1] penalty cost matrix, and reach 0.6863 with [1:30] penalty cost matrix. 

The G-Means results start with 0.8385 with [1:1] penalty cost (accuracy fitness) then get 

higher with higher costs to reach the highest value of 0.8488 with penalty cost matrix [1:15]. 

Then it falls down to reach 0.7933 with [1:30] penalty cost matrix. The results of identifying 

the most relevant features are shown in Table 6 and Figure 5. 

In Table 6, the Bold values are larger than 0.1. It can be concluded that “3G” is an 

important feature for all fitness functions using different cost penalty matrices, “Total-

Consumption” has good impact values for 6 out of 7 fitness functions, “Total-MOU” has 

good impact values for 4 fitness functions, “On-net-MOU” and “Local-sms-fees” impact 

values were good for 3, and 2 fitness functions respectively. Other features got low impacts 

(lower than 0.1). As a summary, Features “3G”, “Total-Consumption”, “Local-sms-fees”, 

“Total-MOU”, and “On-net-MOU” are the most relevant features. Figure 5 shows the 

feature impact values for different penalty cost functions, where it can be inferred that using 

different penalty cost affects the importance level of the features. For example, “Local-sms-

fees” feature had low importance with low penalty cost but got higher importance value 

when GP used higher cost [1:30]. However, “Total-Consumption” feature had high 

importance value with [1:1] penalty cost, but decreased significantly with high penalty cost 

[1:30]. This helps the decision makers to know which feature has a high effect on customers 

and their decision to stop using this service. 

Table 5. Results of Proposed GP-CSL using Different Cost Matrices for Five 
Metrics (Prec: Precision, Rec: Recall, Ch: Churner, nonCh: nonChurner 

Fitness Func.             Accuracy            Prec-nonCh          Rec-Ch          Rec-nonCh        G-Mean            

Accuracy                      0.9769                 0.9761            0.7034            0.9994   0.8385           

Pearson R2           0.97392                         0.9765            0.7097            0.9957            0.8406           

MSE   0.7910    0.9795     0.7824    0.7917     0.7871   

[1:5]                           0.9709                        0.9765            0.7105            0.9924            0.8397           

[1:10]                         0.9407                         0.9783            0.7425             0.9570            0.8428           

[1:15]                         0.8833                          0.9827            0.8102            0.8892            0.8485  

[1:20]                        0.8481                            0.9841            0.8341            0.8493            0.8413           

[1:25]                         0.7686                          0.9887            0.8950            0.7582            0.8236           

[1:30]                        0.6863               0.9936   0.9467   0.6648            0.7922 
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Figure 3. The Results of Recalls for both Churners and nonChurners for all 
GP-CSL using Different Penalty Cost Matrices 

 

Figure 4. The Results of Accuracy and G-Mean for both Churners and 
nonChurners for all GP-CSL using Different Penalty Cost Matrices 

Table 6. Features Impact after using Different Penalty Costs Matrices with 
GP-CSL 

Cost Matrix [1:1] [1:5] [1:10] [1:15] [1:20] [1:25] [1:30] 

3G 0.187 0.185 0.291 0.328 0.322 0.381 0.4 

Total-Consumption 0.295 0.281 0.118 0.209 0.161 0.168 0.07 

Int'l-calling-fees 0.008 0.02 0.013 0.03 0.048 0.026 0.048 
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Int'l-MOU 0.013 0.027 0.037 0.042 0.045 0.023 0.015 

Int'l-sms-fees 0.022 0.015 0.033 0.039 0.03 0.057 0.062 

Int'l-sms-count 0.019 0.016 0.03 0.047 0.025 0.018 0.039 

Local-sms-fees 0.016 0.01 0.009 0.022 0.056 0.223 0.26 

Local-sms-count 0.011 0.012 0.025 0.06 0.046 0.029 0.07 

Total-MOU 0.333 0.4 0.285 0.087 0.108 0.042 0.013 

On-net-MOU 0.097 0.034 0.159 0.136 0.16 0.034 0.023 

 

5.4. Comparison with other Classifiers 

A comparison of GP using different fitness functions (accuracy, Pearson R2, MSE, and 

cost sensitive learning) with other well-known classifiers is conducted and discussed in this 

section. Other well-known classifiers were implemented using WEKA [24], and 

HeuristicLab [23]. The comparison was based on five metrics, accuracy, precision, recall-

Churner, recall-nonChurner and G-Mean. Other classifiers used in the comparison are: 

Multilayer Perceptron Neural network classifier (MLP), Neural network ensemble classifier 

Random forest classifier [25], decision tree classifier (J48), Bayes Network learning (BN) 

K-nearest neighbours classifier (KNN), and Naive Bayes classifier (NB). The settings used 

for each classifier are shown in Table 7. 

Table 7. Settings of Comparative Classifiers 

Classifier Parameter Value 

MLP Hidden neurons 12 

Random Forest Number of trees 10 

Ensemble of MLPs Number of networks 10 

KNN Number of neighbors (K) 1 

 

The comparisons results are shown in Table 8, where the average of 10 runs, and the 

standard deviation (presented in brackets) are reported. As we notice in the table, the 

proposed GP-CSL outperforms most of the other classifiers in detecting the churner 

customers. Moreover, other classifiers struggle to handle the detection of churners and 

nonChurners where they either achieve high detection of churners or nonChurners not both. 

For example, MLP achieved 0.9829 for recall of nonChurners, but 0.3360 for recall of 

churners. Moreover, NB achieved 0.9381 for recall of churners but 0.4390 for recall of 

nonChurners. 

Looking at the G-mean metric, GP-CSL outperforms other classifiers and obtained the 

higher values. The last three rows in Table 8, show the results of other related work done 

on the same churn data [12] and [15]. The best accuracy achieved from related work was 

0.9713, where GP-Accuracy achieved better accuracy (0.9769) and GP-CSL [1:5] achieved 

a close value (0.9709). The best RecallChurner achieved by related work is 0.827, where 

GP-CSL [1:20], GP-CSL [1:25], and GP-CSL [1:30] achieved higher values (0.8341, 

0.8950, and 0.9467 respectively). Values of recall-nonChurner and G-mean was not stated 

in related work, therefore, we could not compare these metrics. 
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Figure 5. Feature Impact Values for Different Penalty Cost Functions used 
by GP-CSL 

Table 8. Results of other Classifiers Compared with GP using Different 
Fitness Functions (Prec: Precision, Rec: Recall, Ch: Churner, nonCh: 

nonChurner) 

Classifier 

 

 

Accuracy Prec-nonCh Rec-Ch Rec-nonCh G-Mean 

AVE AVE AVE AVE AVE 

(STD) (STD) (STD) (STD) (STD) 

GP-Accuracy 
0.9769 0.9761 0.7034 0.9994 0.8385 

(0.0010) (0.0000) (0.0000) (0.0010) (0.0000) 

GP-Pearson R2 
0.9739 0.9765 0.7097 0.9957 0.8406 

(0.0021)  (0.0006)  (0.0085)  (0.0028)  (0.0049)  

GP-MSE 
0.7910 0.9795 0.7824 0.7917 0.7870 

(0.1685)  (0.0123)  (0.1645)  (0.1921)  (0.1778)  

GP-CSL [1:5] 
0.9709 0.9765 0.7105 0.9924 0.8397 

(0.0017)  (0.0001)  (0.0013)  (0.0019)  (0.0005)  

GP-CSL [1:10] 
0.9407 0.9783 0.7425 0.9570 0.8428 

(0.0157)  (0.0010)  (0.0157)  (0.0180)  (0.0052)  

GP-CSL [1:15] 
0.8833 0.9827 0.8102 0.8892 0.8485 

(0.0198)  (0.0019)  (0.0260)  (0.0235)  (0.0039) 

GP-CSL [1:20] 
0.8481 0.9841 0.8341 0.8493 0.8413 

(0.0248)  (0.0016)  (0.0210)  (0.0285)  (0.0059)  

GP-CSL [1:25] 
0.7686 0.9887 0.8950 0.7582 0.8236 

(0.0198)  (0.0010)  (0.0126)  (0.0223)  (0.0071)  

GP-CSL [1:30] 
0.6863 0.9936 0.9467 0.6648 0.7922 

(0.0454)  (0.0032) (0.0315) (0.0517) 5(0.0170) 

MLP 0.9336 0.9472 0.3360 0.9829 0.5746 
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(0.0006)  (0.0000)  (0.0000)  (0.0007)  (0.0002)  

Random Forest 
0.9767 0.9763 0.7058 0.9991 0.8397 

(0.0004)  (0.0001)  (0.0008)  (0.0004)  (0.0004)  

MLP (Ensemble) 
0.9568 0.9783 0.7373 0.9749 0.8478 

(0.0008)  (0.0001)  (0.0008)  (0.0009)  (0.0005)  

J48 
0.9754 0.9642 0.7037 0.9978 0.8379 

(0.0790)  (0.0143)  (0.0008)  (0.0009)  (0.0003)  

BN 
0.9606 0.7482 0.7320 0.9794 0.8467 

(0.4138)  (0.0424)  (0.0053)  (0.0049)  (0.0016)  

KNN 
0.9594 0.7388 0.7247 0.9788 0.8422 

(0.1974)  (0.0199)  (0.0075)  (0.0023)  (0.0041)  

NB 
0.4770 0.1213 0.9381 0.4390 0.6416 

(1.5972)  (0.0032)  (0.0043)  (0.0174)  (0.0124)  

NCR + CPSO [12] 0.894 0.694 0.827 N/A N/A 

Flat ensemble 

 of ANN [15] 
0.958 0.725 0.732 N/A N/A 

Ensemble of 

 NCL-ANN [15] 
0.9718 0.814 0.803 N/A N/A 

 

6. Conclusion 

This paper proposed the application of genetic programming using cost sensitive 

learning (GP-CSL) to solve churn prediction problem as an optimized classification 

problem. GP-CSL used different penalty costs for prediction errors ranging from 5 to 30 

with a step of 5, each is represented in a penalty cost matrix as [1:5], [1:10], [1:15] to [1:30]. 

A real data from the telecommunication market was used to test the proposed approach. 

Experiments compared proposed approach with other well-known GP classification fitness 

functions such as accuracy, Pearson R2, and Mean Squared Errors. Comparisons were done 

between all these approaches using different metrics such as accuracy, Precision, Recall, 

and G-means. 

The results showed that the proposed approach GP-CSL achieved better detection of 

churners using higher penalty cost. Moreover, GP-CSL using a penalty cost matrix [1:20] 

achieved better detection rates of churners and normal customers at the same time. 

Comparison with other well-known classifiers, and other related work were conducted also, 

and results showed that GP-CSL outperform other classifiers and previous work in 

detecting churners. 

Moreover, the paper conducted an analysis of the unique property of GP of finding the 

most relevant features in the dataset and compared them using different penalty cost 

matrices and accuracy fitness function. The tests found that out of 10 features 4 to 5 features 

are the most relevant features used in different fitness functions of GP, and the most relevant 

features can vary by changing the penalty cost. 

Our future plans include testing the same approach on different real datasets from 

different fields, such as weather detection. Also, we plan to study the effect of the top five 

most relevant features using other classifiers instead of using the whole dataset features. 
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