
MapReduce Intrusion Detection System based on a
Particle Swarm Optimization Clustering Algorithm

Ibrahim Aljarah and Simone A. Ludwig
Department of Computer Science

North Dakota State University
Fargo, ND, USA

{ibrahim.aljarah,simone.ludwig}@ndsu.edu

Abstract—The increasing volume of data in large networks to
be analyzed imposes new challenges to an intrusion detection
system. Since data in computer networks is growing rapidly,
the analysis of these large amounts of data to discover anomaly
fragments has to be done within a reasonable amount of time.
Some of the past and current intrusion detection systems are
based on a clustering approach. However, in order to cope
with the increasing amount of data, new parallel methods need
to be developed in order to make the algorithms scalable. In
this paper, we propose an intrusion detection system based
on a parallel particle swarm optimization clustering algorithm
using the MapReduce methodology. The use of particle swarm
optimization for the clustering task is a very efficient way
since particle swarm optimization avoids the sensitivity problem
of initial cluster centroids as well as premature convergence.
The proposed intrusion detection system processes large data
sets on commodity hardware. The experimental results on a
real intrusion data set demonstrate that the proposed intrusion
detection system scales very well with increasing data set sizes.
Moreover, it achieves close to the linear speedup by improving
the intrusion detection and false alarm rates.

I. INTRODUCTION

Network intrusion detection has been identified as one of the
most challenging needs of the network security community in
recent years. This is because of the inflated number of users
and the amount of data exchanged which makes it difficult
to distinguish the normal data connections from others that
contain attacks. This requires the development of intrusion
detection systems (IDSs) that can analyze large amounts of
data in a reasonable time in order to take appropriate actions
against the attacks.

IDSs are classified based on their analysis model and place-
ment approach. In the analysis approach, IDSs are categorized
into two classes: misuse and anomaly detection. In the misuse-
based class, the IDS checks the network and system activity for
a known misuse pattern that was identified beforehand through
a pattern matching algorithm.

The anomaly-detection based IDS works differently
whereby the decisions are made based on a profile of a normal
network or system behavior, often constructed using statistical
or machine learning techniques. Each of these approaches offer
its strengths and weaknesses. Misuse-based systems generally
have very low false positive rates that indicate error rates
of mistakenly detected non-intrusion cases. Therefore, this

approach is seen in the majority of commercial systems. In
addition, the misuse-based systems are unable to identify novel
or obfuscated attacks.

On the other hand, anomaly-based IDSs are able to detect
new attacks that have not been seen before. However, this
model produces a large number of false positives. The reason
for this is the inability of current anomaly-based techniques to
cope adequately with the fact that in the real world, normal,
legitimate computer networks, and system usage changes over
time. This implies that any profile of normal behavior needs
to be dynamic. Thus, with the exponential growth in the
different types of attacks, a pattern-matching algorithm is
not trust-worthy in the misuse approach, and therefore, it is
recommended to use both in an IDS [1].

The placement approach is usually divided into host-based
and network-based systems. An IDS which operates on a
computer to detect malicious activity on that host, is called
a host-based IDS; whereas an IDS that tries to detect events
of interest by analyzing and monitoring network traffic data is
called a network-based IDS [2]. Network-based IDSs detect
attacks by analyzing network packet traffic along a network
segment or switch, enabling the monitoring and protection of
multiple hosts by a separate machine. Host-based IDS systems
have the ability to determine if an attempted attack was
successful or not in a local machine. Network-based systems
are able to monitor a large number of hosts with relatively
low deployment costs in comparison to host-based systems,
and are able to identify attacks to and from multiple hosts.

There are several different data mining techniques that have
been used for IDSs in the past. Clustering [3] is one of the data
mining techniques that is used to explore data. Clustering uses
an unsupervised learning mechanism to find distinct patterns
in a group of data without prior knowledge about data labels.
Through the learning process, the similarities between the data
objects are measured to divide the data objects into different
subsets called clusters. High quality clusters denote that the
similarities within the same cluster and the dissimilarities
between different clusters should be maximized. In many
clustering algorithms, the similarity between different data
objects is based on distance calculations such as the closer
objects are placed together. The distance is considered the best
similarity measure especially when the shape of the clusters

2013 IEEE Congress on Evolutionary Computation
 June 20-23, Cancún, México

978-1-4799-0454-9/13/$31.00 ©2013 IEEE 955

is formed to be spherical.
There are many applications in which large data sets need

to be explored such as image analysis, pattern recognition
analysis, social networks, large-scale network traffic analysis
and many others. These applications are too large to be pro-
cessed by sequential methods. Traditional intrusion detection
methods based on clustering do not scale well with larger sizes
of network traffic and are computationally expensive in terms
of memory. Furthermore, large-scale network traffic analysis
provides a challenge in terms of performance while identifying
the anomalies connections, and that is why a parallel algorithm
is needed for detecting intrusions.

In general, developing traditional parallel algorithms using
the Message Passing Interface (MPI) methodology [4] faces
a wide range of difficulties such as handling the network
communication in an efficient manner and balancing the dis-
tribution of the processing load between different processors.
Also, parallel algorithms suffer from node failure, thus reduc-
ing the algorithm’s scalability. As a result, the development
of an efficient parallel intrusion detection algorithm should be
scalable and obtain high intrusion detection rates.

The MapReduce programming model [5] has become an
alternative parallel processing model for MPI [4] especially
for data intensive applications. Many advantages make the
MapReduce methodology to be a good choice for parallelizing
the data mining tasks such as easy implementation without
having to know too many parallel programming details. In
addition, MapReduce provides many solutions for node failure
and load balancing.

MapReduce usually divides the input data set into inde-
pendent splits which depend on the size of the data set and
the number of computer nodes used. MapReduce consists of
two main functions: Map and Reduce functions. The Map
function processes the input data records as (key, value) data
pairs to generate intermediate output as (key, values list) data
pairs, and then the Reduce function merges and aggregates all
intermediate (values list) output coming from the Map function
having the same intermediate key.

Fig. 1. Hadoop Architecture Diagram [7]
Hadoop [6] is an open source framework, introduced by

Apache that uses the MapReduce methodology, which was

built in order to deal with data-intensive applications. The
Hadoop framework has its own distributed file system called
the Hadoop Distributed File System (HDFS) that is used to
support the management and processing of large scale data
sets. Furthermore, the MapReduce in Hadoop is designed
to work efficiently with HDFS by moving the computation
process to the data and not the other way around to allow
Hadoop to achieve high data locality. Figure 1 shows the
Hadoop architecture diagram with interaction between its
components. Interested readers may refer to [6] for more
details.

This paper presents a parallel intrusion detection system
(IDS-MRCPSO) based on the MapReduce framework since
it has been confirmed as a good parallelization methodology
for many applications. In addition, the proposed system in-
corporates clustering analysis to build the detection model by
formulating the intrusion detection problem as an optimization
problem. Furthermore, the proposed system has been tested
on a real large-scale intrusion data set with different training
subset sizes to show its speedup and scalability, and to present
its detection quality.

The rest of this paper is organized as follows: Section II
presents the related work in the area of anomaly-detection
algorithms based on clustering. In Section III, a brief intro-
duction to the Particle Swarm Optimization (PSO) technique
is given and then our proposed IDS-MRCPSO system is
introduced. Section IV presents the experimental evaluation,
and Section V presents our conclusions.

II. RELATED WORK

Anomaly-detection based intrusion detection systems work
based on a profile of a normal network or system behavior
using statistical or machine learning techniques. Anomaly-
detection based on machine learning techniques can be cat-
egorized as either supervised or unsupervised depending on
whether the class labels are known during the learning process
or not. Several techniques have been proposed to tackle the
intrusion detection problem using unsupervised algorithms like
clustering-based algorithms.

We focus only on closely related work of unsupervised
algorithms that were developed to solve anomaly detection.
Also, we discuss one unsupervised parallel algorithm that was
applied on anomaly detection systems.

Leung et al. in [7] proposed a density-based clustering
algorithm by applying the frequent pattern tree on a high
dimensional data set. Their algorithm was applied on one
million records and achieved good detection rates, but it
suffered from high false positive rates.

However in [8], the same authors proposed an anomaly
detection technique based on a K-means clustering algorithm.
A technique to enhance the initial centers was proposed to
avoid the shortcoming of sensitivity of the initial clusters
in K-means clustering to enhance the clusters quality. The
experiments were applied on 0.4% of the whole data set.

A fuzzy C-means intrusion detection algorithm was pro-
posed in [9], where a weighting means for the degree of record

956

membership with specific clusters was used. The algorithm
was tested with five samples of random data, each sample
having ten thousand records. The results showed high false
positives rates with satisfactory detection rates.

Li et al. in [10] combined the K-means algorithm with PSO
to build an intrusion detection system. The algorithm tried to
benefit from the PSO characteristics to avoid premature con-
vergence that K-means suffers from. The algorithm achieved
relatively better results than the K-means algorithm.

Mazel et al. in [11] introduced an unsupervised approach
to detect the network anomalies by combining the subspace
clustering with inter-clustering result associations to mark the
anomalies from the network traffic flow. The authors build an
autonomous intrusion detection system to enhance the network
protections against the intrusions. The system was tested with
real network traffic and verified that the anomalies can be
detected in the distributed network.

Gao et al. in [12] proposed a parallel clustering ensemble
algorithm to speed the detection of intrusions in massive
network traffic. Their algorithm was applied on a sample
of data and achieved improved detection time while having
satisfactory detection rate.

The technique proposed in this paper is different from the
techniques explained above. All algorithms were examined
with small sample sizes that were selected randomly from the
complete training KDD intrusion data set [13], whereas our
proposed technique is applied on the complete training data
set for building the learning model.

In particular, we used the whole training data set because the
testing data used does not come from the same distribution as
the training data. Thus, random sampling affects the intrusion
detection system because random sampling only reflects the
distribution of a training data sample which leads to possible
significant regions of the testing data being left out. For these
reasons, using a larger training sample is likely to cover
more significant regions and build a stronger detection model.
Furthermore, the proposed system enables the use of larger
amounts of data to build the detection model due to the
parallelization, and this leads to higher detection rates.

As far as we know, our proposed system is the first work
on the parallelization of intrusion detection systems using the
MapReduce methodology, which is considered an alternative
model for parallel processing over the MPI methodology [4].

III. PROPOSED APPROACH

Given that our proposed intrusion detection system is based
on PSO clustering using MapReduce methodology, we first
briefly introduce PSO, introduce PSO clustering using MapRe-
duce (MR-CPSO) [14], and then outline the details of our
proposed intrusion detection system.

A. Background to Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a swarm intelligence
method developed by Kennedy and Eberhart in 1995 [15].
The behavior of PSO mimics the social interaction between
individuals such as interactions between the birds in flocks

trying to locate an optimal food source. The direction of the
movement of each bird is controlled by its current location,
the best food location it ever found, and the best food location
any bird in the flock ever found.

In PSO, a number of simple entities called particles are
placed in the search space of the target problem, and each
particle evaluates its position based on a given objective func-
tion calculating the fitness value. Each particle then determines
its movement (velocity) through the problem search space by
taking the history of its own current position and best position
achieved by the whole swarm. Furthermore, the movement of a
particle is affected by its inertia, and other constants. However,
the whole swarm after several iterations is likely to move close
to the global best solution.

PSO updates the particles positions inside the problem
search space using the following equations:

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (1)

where Xi is the position of particle i, t is the iteration number,
and Vi is the velocity of particle i given by the following
equation:

Vi(t+ 1) = W · Vi(t) + r1 · c1 · [XPi −Xi(t)]

+r2 · c2 · [XG−Xi(t)]
(2)

where W is inertia weight, r1 and r2 are randomly generated
numbers uniformly distributed between 0 and 1, c1, c2 are
constant coefficients, XPi is the current best position of
particle i, and XG is the current global best position of the
whole swarm.

B. Proposed Intrusion Detection System (IDS-MRCPSO)

Analyzing large network traffic data to detect intrusions
takes a long time, thus, our proposed system uses the data
clustering concept based on the PSO approach. PSO is paral-
lelized using the MapReduce model as to scale with large-scale
network traffic.

The proposed intrusion detection system consists of three
main components: preprocessing component, detector model
construction component, and validation component. Figure 2
shows the proposed IDS architecture diagram. The preprocess-
ing component follows three consequent steps: missing value
record elimination, categorical feature elimination, and data
normalization. First, we discard the records that have missing
values because we use the records in the distance equation of
the clustering technique, and therefore, a record with a missing
value is not usable in the equation.

Then, the elimination of the categorical features is done
by removing any feature with categorical data. The purpose
of this process is to use only numerical data in our distance
calculation, because for the categorical data the distance
calculations are difficult and depend on the data itself. We
could use the matching technique, but it would not help to
distinguish the records in terms of the total distance.

At the end of the preprocessing stage, the normalization
process normalizes the data set to avoid the bias problem some

957

Fig. 2. Proposed IDS-MRCPSO Architecture Diagram

larger features values can cause. Furthermore, the normaliza-
tion process is applied on the training and testing data sets at
the same time, because applying normalization on training and
testing data sets separately will create two different normalized
data sets, since the minimum and maximum are based on
the input data. The normalization process is done using the
following equation:

Xjinew
=

Xji −Ximin

Ximax
−Ximin

(3)

where Xji is the value of record j for feature i; Ximin
is the

minimum value of feature i; Ximax
is the maximum value of

feature i.
The detector model construction stage starts by applying

the MR-CPSO [14] algorithm to the data results from the
preprocessing stage, where only training data is used.

In [14], the authors proposed a parallel particle swarm
optimization clustering (MR-CPSO) algorithm that is based
on the MapReduce programming model. The experimental
evaluation using large-scale data sets proved that MR-CPSO
scales very well with increasing data set sizes and achieved
reasonable clustering quality. The MR-CPSO is a partition-
ing clustering algorithm which uses individual centroids to
represent different clusters. The initial centroids are selected
randomly from the data set instances, then the centroids are
updated iteratively based on the swarm particles’ velocities
until convergence to the global best centroid vector is achieved,
which then is used in the validation stage. The best centroid
vector is evaluated based on the average minimum distances
between the data instances and the selected cluster centroids.

The computational complexity of an intrusion detection
system depends on the MR-CPSO algorithm used to gener-
ate optimal centroids from the training data. This algorithm
has quadratic complexity because it requires computation of
pairwise distances for all data set instances. In addition, the
validation stage of the detection model is relatively fast,
whereby it involves comparing testing data records with a
small number of generated centroids.

In MR-CPSO, each particle keeps some information which
is used in the clustering task such as: centroid vector, velocity
vector, fitness value, etc. The particle information is updated
in each iteration using the information from the previous
iteration. MR-CPSO is divided into three main modules: the
first module is responsible to update the particle’s centroid
vector, the second module is responsible to evaluate the fitness
function, and the third module is to merge the outputs of the
first and second modules in order to update the swarm. Figure
3 shows the MR-CPSO architecture diagram.

Fig. 3. MR-CPSO Algorithm Architecture Diagram [7]

In the first module, each particle gets an updated centroid
vector in each iteration based on PSO movement equations. In
this module an individual MapReduce job is triggered, where
the Map function treats each particle as a Value and particle
identification number as a Key. The Map function is started
by retrieving the Map Value which contains all information
about the particle. After that, the centroid vector is updated
using the previous information based on the PSO equations.
At the end, the Map function emits the particle with updated
centroid vector to the Reduce function. The Reduce function
sorts the Map intermediate output according to the Key and
merges them into one output intermediate file to be the input
for the next module.

The second module of MR-CPSO presents another MapRe-
duce job that evaluates the fitness function using the updated
swarm particles. The fitness evaluation depends on measuring
the distances between all data records and particle centroid
vector. The fitness evaluation is calculated using the total sum
of squares errors as follows:

Fitness =

∑k
j=1

∑nj

i=1 Distance(Ri, Cj)

k
(4)

where nj denotes the number of records that belong to cluster
j; Ri is the ith record; k is the number of available centroids;
Distance(Ri, Cj) is the Euclidean distance between record
Ri and the centroid Cj .

The Map function in this module treats each record as a
Value and each record’s identification number as a Key. For
each particle in the retrieved swarm, the Map function extracts
the centroid vector from the particle and calculates the distance
value between the Map Value (record) and the centroid vector,

958

and then returns the centroid id, which contains the minimum
distance, and the particle id to the Reduce function.

The Reduce function task is to group the values with the
same Key together and then to calculate the summation of the
minimum distances for each particle centroid. After that, the
Reduce function emits the Key with total distances to use them
as new centroid fitness values.

In the third module of MR-CPSO, the fitness value is
calculated for each particle by summing centroids fitness
values generated by the second module. Then, the previous
swarm fitness values are updated by the new fitness values.
After that, the best personal fitness and its centroids are
modified based on a comparison between these values and
the new fitness values. In addition, if there is any particle that
has a fitness value smaller than the current global best fitness
value, the global best fitness is assigned the smaller fitness
value as well as its centroid vector is updated. At the end, the
updated swarm is used for the next iteration. For more details
about the MR-CPSO algorithm, the readers can refer to [14].

After the detector model construction stage ends, we extract
the global best centroid vector to use them as the detection
model in the validation stage. In the validation stage, we
used different record subsets called testing data set to evaluate
the detection model by calculating the distances between the
testing records and the global best centroids vector (detection
model). After that, we assigned the testing records to the
closed clusters based on the minimum distances. The pseudo-
code of the testing records assignment procedure is shown in
Algorithm 1.

Algorithm 1 Testing Records Assignment
procedure CREATEASSIGNMENT(model, testData, cluster-
sNo)

featuresNo=extractNoOfFeatures(testingData)
recordsNo=extractNoOfRecords(testingData)
assignmentVector= new Array(recordsNo)
for i = 1 to recordsNo do

dist = calcEuclidean(model[1], testData[i])
minDist=dist
cID=1
for j = 2 to clustersNo do

dist=calcEuclidean(model[j], testData[i])
if dist ≤ minDist then

minDist=dist
cID=j

end if
end for
assignmentCluster[i]=cID

end for
return assignmentVector

end procedure

Finally, the cluster labeling process is triggered to find the
correct labels for output clusters generated from the testing
record assignment step.

The assignment of cluster labels is accomplished by the
maximum percentage of intersections between the original
clusters of the testing data, and the clusters that are generated
by applying the testing record assignment.

Fig. 4. Clusters labeling process example.

Figure 4 illustrates the cluster labeling process on an exam-
ple, where the percentage of the normal records in A is PNA

= Normal∩A
size(A) = 4

6 , and the percentage of anomalous records in
A is PAA = Anomalous∩A

size(A) = 2
6 ; the maximum between these

values is max(PNA, PAA) = 4
6 ; thus, cluster A is a normal

cluster. Similarly, for cluster B, the percentage of normal
records is PNB = Normal∩B

size(B) = 2
6 , PAB = Anomalous∩B

size(B) =
4
6 is the percentage of anomalous records, and max(PNB ,
PAB)= 4

6 ; therefore, cluster B is an anomalous cluster. For
cluster C, PNC = 1

3 , PAC = 2
3 , and max(PNC , PAC) = 2

3 ;
hence C is an anomalous cluster.

IV. EXPERIMENTS AND RESULTS

In this section, we describe the evaluation of the proposed
intrusion detection system in terms of detection quality. Fur-
thermore, we discuss the running time and the system speedup
of our proposed system.

A. Environment

We ran the experiments on the Longhorn Hadoop cluster
hosted by the Texas Advanced Computing Center (TACC)1.
The cluster contains 384 compute cores and 2.304 TB of ag-
gregated memory and has 48 nodes containing 48GB of RAM,
8 Intel Nehalem cores (2.5GHz each). For our experiments, we
used Hadoop version 0.20 for the MapReduce framework, and
Java runtime 1.6 for the system implementation. Furthermore,
in order to guarantee a constant level of parallelization, the
maximum number of mapper and reducer tasks were set to 8
per node since each node contains 8 cores.

B. Data Set Description

To evaluate our proposed system, we used a big intrusion
detection data set [13] that has never has been fully analyzed
by any standard data mining algorithms. It was used in 1999 as
the benchmark at the Knowledge Discovery and Data Mining
(KDD99)2 competition, however, only portions of the data set
were analyzed at a time. This data set contains a standard set
of data to be audited that includes a wide variety of intrusions
simulated in a military network environment.

Each record in the data set represents a connection between
two IP addresses, starting and ending at defined times and

1https://portal.longhorn.tacc.utexas.edu/
2http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

959

protocol. Every record is represented by 41 features, and each
record represents a separate connection and is considered to be
independent of any other record. The data is either identified
as normal or as one of the 24 different types of attacks. The
24 attacks are grouped into four main types: probing, denial
of service (DoS), unauthorized access from a remote machine
(R2L), and unauthorized access to root (U2R).

The training data set contains 4,898,431 connection records,
which are collected during seven weeks of network traffic.
Two weeks are used to produce approximately two million
connection records as the testing data set, which is reduced
to 311,029 records that are used to evaluate the learning
model. Furthermore, it is worth to note that the testing data
set contains 7.5% unknown attack types, which are not in the
training data set.

A preprocessing process is applied on the training and
testing data sets by discarding the records that have missing
values and reducing the number of features to 38 by discarding
the 3 categorical features such as the protocol and service
features. Furthermore, the normalization process is applied on
the training and testing data sets.

1) Training Data Set Samples: In order to evaluate the
impact of the training data set size in the detector model
construction stage, we extracted 5 different samples from the
whole training data set. In this paper, we used the stratified
sampling by randomly selecting the records from the original
training data set by keeping the same ratio between the
different classes.

In order to simplify the names of the training data set
samples, the sample name consist of the specific format based
on the percentage of the whole training data set. For example,
the TRAIN20 sample consists of 20% of the whole training
data set. The 5 samples are described in Table I.

TABLE I
DATA SET SAMPLES

Sample ID Percent.
(%)

Normal Anomalies Total

TRAIN20 20% 194,556 785,130 979,686
TRAIN40 40% 389,112 1,570,260 1,959,372
TRAIN60 60% 583,669 2,355,390 2,939,059
TRAIN80 80% 778,225 3,140,520 3,918,745
TRAIN100 100% 972,781 3,925,650 4,898,431

C. Evaluation Measures

We used the parallel Speedup [16, 17] measure calculated
using Equation 5 to evaluate the performance of our proposed
system. Speedup is measured by fixing the data set by in-
creasing the number of cluster nodes. The speedup measure is
calculated as:

Speedup =
T2

Tn
(5)

where T2 is the running time using 2 nodes, and Tn is the
running time using n nodes, whereby n is a multiple of 2.

For the intrusion detection quality, we used the True Positive
Rate (TPR) or Detection Rate (DR) measure which is the
ratio between the number of correctly detected attacks and

the total number of attacks. Another measure used to evaluate
intrusion detection systems is the False Positives Rate (FPR) or
False Alarm Rate (FAR) which falsely identifies an intrusion
detected that is not an intrusion. FPR is a ratio between
the number of false positives and the total number of false
positives plus the false negatives.

In addition, we evaluate the IDS’s effectiveness by the
Receiver Operating Characteristic (ROC) [18] curve which is
a plot of the TPR against FPR. Therefore, we used the Area
Under Curve (AUC) measure [18] as the ROC curve evaluation
to combine the TPR and FPR which is considered a good
indicator of their relationship. The AUC is calculated by the
following equation:

AUC =
(1− FPR)× (1 + TPR)

2
+

FPR× TPR

2
(6)

We used the PSO settings that are recommended by [19, 20].
We used a swarm size of 100 particles, and an adaptive inertia
weight with maximum value W of 0.9. Also, we set the
acceleration coefficient constants c1 and c2 to 1.49.

D. Results

To evaluate the effectiveness of the IDS-MRCPSO system,
we run multiple experiments using different sizes of training
data that are given in Table I. In Table II, we report the results
of the proposed system based on TPR, FPR, and AUC for
different training data set sizes. For this experiment, we set the
number of PSO iterations to 50, and the number of clusters to 5
which were empirically determined. We observed that the TPR
value of IDS-MRCPSO using the complete training data set
(TRAIN100) achieves the best TPR and AUC value compared
to other smaller training data sets. In addition, TRAIN100
obtains the lowest FPR results of all training data sets. For
example, the IDS-MRCPSO system has a high TPR of 0.939
for TRAIN100, while it has a TPR of 0.903 for TRAIN20. For
TRAIN100, the FPR value is 0.013, while for TRAIN20 the
FRP is 0.038. The AUC value for TRAIN100 is 0.963 while
the AUC value for TRAIN20 is 0.933. Hence, the results show
our system can distinguish between the normal data records
and anomaly records effectively. The results demonstrate that
using larger training data, better results can be achieved.

TABLE II
PROPOSED IDS-MRCPSO SYSTEM RESULTS

Sample ID TPR FPR AUC
TRAIN20 0.903 0.038 0.933
TRAIN40 0.911 0.021 0.945
TRAIN60 0.927 0.015 0.956
TRAIN80 0.935 0.013 0.961
TRAIN100 0.939 0.013 0.963

Figure 5 shows the ROC curve using the proposed IDS-
MRCPSO system. The figure shows that the best performance
with a high AUC value is achieved when using TRAIN-100
compared to the other curves.

To investigate the scalability of the proposed system, we ran
multiple experiments with different number of nodes. In each

960

(a) TRAIN20 Running
Time

(b) TRAIN40 Running
Time

(c) TRAIN60 Running
Time

(d) TRAIN80 Running
Time

(e) TRAIN100 Running
Time

(f) TRAIN20 Speedup (g) TRAIN40 Speedup (h) TRAIN60 Speedup (i) TRAIN80 Speedup (j) TRAIN100 Speedup

Fig. 6. Running time and speedup results on the KDD data set samples. 6(a)-6(e) Running time for KDD data set samples from 20% to 100% sizes. 6(f)-6(j)
Speedup measure for KDD data set samples from 20% to 100% sizes.

Fig. 5. ROC Results

experiment, we report the running time and speedup taking the
average of 25 PSO iterations. The running times and speedup
measures are shown in Figure 6. In Figures 6(a)-6(e), the
running time results are reported for the 5 training data sets
for different number of Hadoop cluster nodes. All subfigures
show that the running time improves faster for 2 nodes and 4
nodes than at the end when the number of nodes is 16 nodes.
Furthermore, the impact of the training data set on the running
time is well observed. The running time on 2 nodes takes 355,
675, 930, 1200 and 1875 seconds for TRAIN20, TRAIN40,
TRAIN60, TRAIN80, and TRAIN100, respectively, while the

running time on 16 nodes takes 67, 109, 136, 175 and 250
seconds for the same samples, respectively. As can be seen,
the improvement factor of the running times for 16 nodes
compared to the running time with 2 nodes are 5.30, 6.19,
6.83, 6.86, and 6.94, respectively.

In Figures 6(f)-6(j), the speedup results using different
training data set sizes with different numbers of nodes are
shown. As can be observed from these figures, the speedup
for TRAIN20 is very close to the linear speedup using 4,
and 6 nodes. It begins to diverge from the linear speedup
around 8 nodes that can be attributed to the overhead of
the Hadoop framework such as starting MapReduce jobs and
storing intermediate outputs to the distributed file system.

The same trend is observed for TRAIN40, TRAIN60,
TRAIN80 and TRAIN100. For TRAIN40, the speedup is very
close to the linear one using 2 to 8 nodes, but it starts to
diverge from the linear line with little difference compared to
TRAIN20. For TRAIN60 and TRAIN80, the speedup is close
to the linear one with 10 and 12 nodes, and it then starts
to have a larger difference for larger numbers of nodes. We
can summarize that the overhead of the Hadoop framework
is reduced for larger data sets and the speedup is closer to
the linear one. Furthermore, the speedup scales close to linear
for most training data sets samples. The proposed system with
TRAIN100 achieves a significant speedup getting very close
to the linear speedup. The speedup results showed reasonable
scalability for the proposed system.

V. CONCLUSION

In this paper, we proposed an IDS-MRCPSO system for
intrusion detection using the MapReduce methodology to
solve the management of large-scale network traffic. We have

961

shown that the intrusion detection system can be parallelized
efficiently with the MapReduce methodology. Experiments
were performed on a real intrusion data set in order to measure
the system speedup. The experimental results reveal that IDS-
MRCPSO is efficient with increasing training data set sizes,
and scales very close to the optimal speedup by improving
the detection results. Furthermore, we used the whole training
data to build the detection model to avoid the random sampling
effects, thus, this technique covers more significant regions of
the training data set, and builds a stronger detection model.
The results validate that using larger training data leads to
better detection rates by keeping the false alarm very low.

Our future plan is to include experiments with new intrusion
data sets. Furthermore, we will expand the system such as to
distinguish between the different types of intrusions and not
only whether an intrusion has occurred or not.

ACKNOWLEDGMENT

This work used the Extreme Science and Engineering Dis-
covery Environment (XSEDE), which is supported by National
Science Foundation grant number OCI-1053575. The authors
acknowledge the support of the NDSU Advance FORWARD
program sponsored by NSF HRD-0811239 and ND EPSCoR
through NSF grant EPS-0814442.

REFERENCES

[1] A. Lazarevic, V. Kumar, and J. Srivastava, “Intrusion
detection: A survey,” Managing Cyber Treats, pp. 19–
78, 2005.

[2] H. Debar and J. Viinikka, “Intrusion detection: Introduc-
tion to intrusion detection and security information man-
agement,” Foundation of Security Analysis and Design
III, vol. 3655, pp. 207–236, 2005.

[3] J. Han, Data Mining: Concepts and Techniques. Morgan
Kaufmann, San Francisco, CA, USA, 2005.

[4] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and
J. Dongarra, MPI: The Complete Reference. MIT Press
Cambridge, MA, USA, 1995.

[5] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” in Proceedings of the OSDI
’04, 2004, pp. 137–150.

[6] T. White, Hadoop: The Definitive Guide, original ed.
O’Reilly Media, Jun. 2009.

[7] K. Leung and C. Leckie, “Unsupervised anomaly de-
tection in network intrusion detection using clusters,”
in Proceedings of the Twenty-eighth Australasian con-
ference on Computer Science. Newcastle, Australia:
Australian Computer Society, 2005, pp. 333–342.

[8] M. Jianliang, S. Haikun, and B. Ling, “The application on
intrusion detection based on k-means cluster algorithm,”
in Proceedings of the 2009 International Forum on
Information Technology and Applications. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 150–152.

[9] W. Jiang, M. Yao, and J. Yan, “Intrusion detection based
on improved fuzzy c-means algorithm,” in Proceedings

of the 2008 International Symposium on Information
Science and Engieering. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 326–329.

[10] Z. Li, Y. Li, and L. Xu, “Anomaly intrusion detection
method based on k-means clustering algorithm with
particle swarm optimization,” in Proceedings of the
2011 International Conference of Information Technol-
ogy, Computer Engineering and Management Sciences.
Washington, DC, USA: IEEE Computer Society, 2011,
pp. 157–161.

[11] J. Mazel, P. Casas, Y. Labit, and P. Owezarski, “Sub-
space clustering, inter-clustering results association &
anomaly correlation for unsupervised network anomaly
detection,” in Proceedings of the 7th International Con-
ference on Network and Services Management, Paris,
France, 2011, pp. 73–80.

[12] H. Gao, D. Zhu, and X. Wang, “A parallel clustering
ensemble algorithm for intrusion detection system,” in
Proceedings of the DCABES’10 Conference. Washing-
ton, DC, USA: IEEE Computer Society, 2010, pp. 450–
453.

[13] S. D. Bay, D. Kibler, M. J. Pazzani, and P. Smyth, “The
uci kdd archive of large data sets for data mining research
and experimentation,” SIGKDD Explor. Newsl., vol. 2,
pp. 81–85, December 2000.

[14] I. Aljarah and S. A. Ludwig, “Parallel particle swarm
optimization clustering algorithm based on mapreduce
methodology,” in Proceedings of the Fourth World
Congress on Nature and Biologically Inspired Computing
(NaBIC’12), Mexico City, Mexico, November 2012, pp.
104–111.

[15] J. Kennedy and R. Eberhart, “Particle swarm optimiza-
tion,” in Proceedings of the 1995 IEEE International
Conference on Neural Networks. Brisbane, Australia,
1995, pp. 1942–1948.

[16] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Intro-
duction to Parallel Computing. Addison-Wesley, USA,
2003.

[17] Z. Gao, T. Li, J. Zhang, C. Zhao, and Z. Wang, “A
parallel method for unpacking original high speed rail
data based on mapreduce,” Springer Berlin Heidelberg,
vol. 124, pp. 59–68, 2012.

[18] W. Zhu, N. Zeng, and N. Wang, “Sensitivity, specificity,
accuracy associated confidence interval and roc analysis
with practical sas implementations,” in In Proceedings of
the NorthEast SAS Users Group Conference NESUG10,
2010.

[19] H. Shi and R. Eberhart, “Parameter selection in particle
swarm optimization,” in Proc. 7th Annual Conference on
Evolutionary Programming, San Diego, CA, 1998, pp.
201–208.

[20] I. Trelea, “The particle swarm optimization algorithm:
convergence analysis and parameter selection,” in Infor-
mation Processing Letters, 2003.

962

